Review of the world's medical device registration systems
https://doi.org/10.25881/18110193_2025_2_6
Abstract
All medical devices, both in the Russian Federation and in the world, undergo registration procedures. However, the related rules and legislation are regulated differently.
The purpose of this study was to assess the functionality of the existing legal framework and registration systems for medical devices in some countries of the world.
Keywords
About the Authors
N. V. TarasovaRussian Federation
Natalia Vladimirovna Tarasova, PhD
Moscow
A. V. Vladzymyrskyy
Russian Federation
DSc
Moscow
E. A. Petrov
Russian Federation
PhD
Moscow
S. Y. Zayunchkovsky
Russian Federation
Moscow
References
1. FDA. Clinical Performance Assessment: Considerations for Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data in Premarket Notification (510(k)) Submissions. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-performance-assessment-considerations-omputer-assisted-detection-devices-applied-radiology (2022).
2. EU. Medical Devices. https://health.ec.europa.eu/medical-devicessector_en (2024).
3. NMPA. Medical Devices Database. https://www.nmpa.gov.cn/datasearch/search-result.html (2024).
4. Pesapane F, Volont´e C, Codari M, Sardanelli F. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights imaging. 2018: 745–753.
5. FDA. Computer-Assisted Detection Devices Applied to Radiology Images and RadiologyDevice Data - Premarket Notification [510(k)] Submissions. https://www.fda.gov/regulatory-information/searchfda-guidance-documents/computer-assisted-detection-devices-applied-radiology-images-and-radiology-device-data-premarket (2022).
6. Shiyuan Liu. Artificial Intelligence in Medical Imaging in China. 2024. doi: 10.1007/978-981-99-8441-1.
7. FDA. Developing a Software Precertification Program: A Working Model. https://www.fda.gov/media/119722/download (2019).
8. Global Strategy on Digital Health 2020–2025. Geneva: World Health Organization; 2020. Available at: https: //apps.who.int/iris/handle/10665/344249. Accessed 04. 12. 2024.
9. Nateghi R, Danyali H, Helfroush MS. A deep learning approach for mitosis detection: application in tumor proliferation prediction from whole slide images. Artif Intell Med. 2021; 114: 102048.
10. Liu X, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Lancet Digit. Health. 2020; 2: e537–e548.
11. Prikaz Federal'noj sluzhby po nadzoru v sfere zdravoohraneniya ot 06. 05. 2019 №3371 «Ob utverzhdenii Administrativnogo reglamenta Federal'noj sluzhby po nadzoru v sfere zdravoohraneniya po predostavleniyu gosudarstvennoj uslugi po gosudarstvennoj registracii medicinskih izdelij». (In Russ.)
12. Postanovlenie Pravitel'stva RF ot 1 aprelya 2022 g. № 552 «Ob utverzhdenii osobennostej obrashcheniya, vklyuchaya osobennosti gosudarstvennoj registracii, medicinskih izdelij v sluchae ih defektury ili riska vozniknoveniya defektury v svyazi s vvedeniem v otnoshenii Rossijskoj Federacii ogranichitel'nyh mer ekonomicheskogo haraktera». (In Russ.)
13. Prikaz Minzdrava RF ot 6 iyunya 2012 g. № 4n «Ob utverzhdenii nomenklaturnoj klassifikacii medicinskih izdelij». (In Russ.)
14. Postanovlenie Pravitel'stva Rossijskoj Federacii ot 30 noyabrya 2024 g. №1684 «Ob utverzhdenii Pravil gosudarstvennoj registracii medicinskih izdelij». (In Russ.)
15. Clark P, Kim J, Aphinyanaphongs Y. Marketing and US Food and Drug Administration Clearance of Artificial Intelligence and Machine Learning Enabled Software in and as Medical Devices : A Systematic Review. JAMA Netw Open. 2023; 6(7): e2321792. doi: 10.1001/jamanetworkopen.2023.21792.
16. Zhu S, Gilbert M, Chetty I, Siddiqui F. The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical devices: an analysis of the characteristics and intended use. Int. J. Med. Inform. 2022; 165: 104828.
17. Benjamens S, Dhunnoo P, Mesk´o B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit. Med. 2020; 3: 118.
18. Vladzimirskij AV, Vasil'ev YUA, Arzamasov KM, et al. Komp'yuternoe zrenie v luchevoj diagnostike: pervyj etap Moskovskogo eksperimenta. 2-e izdanie. — M.: Izdatel'skie resheniya, 2023. 388 р. (In Russ.)
19. He J, et al. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2019; 25: 30-36.
20. Blagosklonov NA, Kobrinskij BA. E`kspertnaya sistema dlya diagnostiki nasledstvenny`x zabolevanij. Vestnik novy`x medicinskix texnologij. 2021; 4: 124-128. (In Russ.) doi: 10.24412/1609-2163-2021-4-124-128.
21. Wu E, et al. How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals. Nat. Med. 2021; 27: 582-584.
22. Muehlematter UJ, Daniore P, Vokinger KN. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): a comparative analysis. Lancet Digit. Health. 2021; 3: e195-e203.
23. Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology. Nat. Rev. Cancer. 2018; 18: 500-510.
24. Programma dlya EVM. Veb-instrument dlya kontrolya kachestva datasetov. Vasil'ev YUA, Vladzimirskij AV, Omelyanskaya OV, Arzamasov KM, Kirpichev YuS, Semenov SS, Borisov A.A., Zelenova MA, Sahashchik UA. Svidetel'stvo o gosudarstvennoj registracii programmy dlya EVM № 2023619686 RF. Veb-instrument dlya kontrolya kachestva datasetov: № 2023617136: zayavl. 13. 04. 2023: opubl. 15. 05. 2023. (In Russ.)
Review
For citations:
Tarasova N.V., Vladzymyrskyy A.V., Petrov E.A., Zayunchkovsky S.Y. Review of the world's medical device registration systems. Medical Doctor and Information Technologies. 2025;(2):6-15. (In Russ.) https://doi.org/10.25881/18110193_2025_2_6