The concept of utilizing Large Language Models for enhancing case-based learning in medical education
https://doi.org/10.25881/18110193_2024_3_62
Abstract
Objective. The study is devoted to modern forms of case method implementation as a key tool in the development of clinical thinking of doctors. The main factors complicating the creation of situational tasks and limiting the large-scale application of this method in medical education are identified.
Materials and methods. The concept of using large language models (LLM) to reduce the complexity and labor intensity of developing situational tasks in medical education is proposed.
Results. A prototype of an interactive LLM ChatGPT-4o-based case study based on a clinical guideline for chronic heart failure has been developed and tested. The prototype allows dialogic interaction with learners, generation of laboratory and instrumental data, and real-time adaptation of case complexity. Despite its effectiveness, risks associated with the occurrence of content generation errors (so-called “hallucinations”) have been confirmed.
Conclusion. The concept of LLM application for automation and improvement of case method in medical education is proposed. Requirements for the development of a digital solution are formulated, which will greatly simplify the creation and modification of case problems and will ensure the development of clinical thinking of physicians. Further efforts should be aimed at minimizing generative errors and creating specialized interfaces for effective use of LLM in training.
About the Authors
P. E. AstashevRussian Federation
PhD
Moscow
O. V. Penzin
Russian Federation
PhD
Moscow
S. A. Subbotin
Russian Federation
Moscow
O. E. Karpov
Russian Federation
DSc, Professor, Academician of the RAS
Moscow
References
1. Shkuratova EI. Sushhnost' metoda case-based learning. Sovremennye nauchnye issledovanija i innovacii. 2017; 11. (In Russ.)
2. Melojan VG, Beglarjan ME, Luzin AI. Problemy sovremennogo pedagogicheskogo obrazovanija. 2022; 75-2. Available from: https://cyberleninka.ru/article/n/istoriya-razrabotki-i-ispolzovaniya-keys-metoda-v-uchebnom-protsesse. Сited 27.08.2024. (In Russ.)
3. Lane JL, Slavin S, Ziv A. Simulation in medical education: A re- view. Simulation & Gaming. 2001; 32(3): 297-314.
4. Andronov VP. Formirovanie klinicheskogo myshlenija v uslovijah vuzovskogo obuchenija // Izvestija Samarskogo nauchnogo centra RAN. 2012; 2-1. Available from: https://cyberleninka.ru/article/n/formirovanie-klinicheskogo-myshleniya-v-usloviyah-vuzovskogo-obucheniya. Сited 27.08.2024. (In Russ.)
5. Buravkova AG, Dem'janova OB, Buravkov BP. Situacionnye zadachi kak sposob formirovanija klinicheskogo myshlenija vracha. Lichnost', sem'ja i obshhestvo: voprosy pedagogiki i psihologii. 2014; 38. Available from: https://cyberleninka.ru/article/n/situatsionnye-zadachi-kak-sposob-formirovaniyaklinicheskogo-myshleniya-vracha. Сited 27.08.2024. (In Russ.)
6. Pogorelova IG, Zhukova EV, Kaljagin AN. Ispol'zovanie kejs-metoda v vysshem medicinskom obrazovanii. BMZh. 2010; 2. Available from: https://cyberleninka.ru/article/n/ispolzovanie-keys-metoda-v-vysshemmeditsinskom-obrazovanii. Сited 27.08.2024. (In Russ.)
7. Putincev AN, Alekseev TV. Kejs-metod v medicinskom obrazovanii: sovremennye programmnye produkty. Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. 2016; 12-9: 1655-1659. (In Russ.)
8. Mitchell JA, Lee AS, TenBrink T, et al. AI/LEARN: an interactive videodisk system for teaching medical concepts and reasoning. J Med Syst. 1987; 11(6): 421-429. doi: 10.1007/BF00993009.
9. Metodicheskie rekomendacii po sozdaniju interaktivnyh situacionnyh zadach. Centr razvitija nepreryvnogo medicinskogo i farmacevticheskogo obrazovanija na baze FGAOU VO RNIMU im. N.I. Pirogova Minzdrava Rossii Available from: https://centrnmo.ru/fileadmin/user_upload/files/metodicheskie_rekomendacii_po_sozdaniju_isz.pdf. Сited 27.08.2024. (In Russ.)
10. Interaktivnye situacionnye zadachi po chteniju i interpretacii jelektrokardiogramm. Portal medicinskogo i farmacevticheskogo obrazovanija Minzdrava Rossii Available from: https://edu.rosminzdrav.ru/specialistam/proekty/novye-vozmozhnosti-nepreryvnogo-obrazovanija/interaktivnyesituacionnye-zadachi-po-chteniju-i-interpretacii-ehlektrokardiogramm. Сited 27.08.2024. (In Russ.)
11. ChatGPT. OpenAI, L.L.C. Available from: https://chatgpt.com. Сited 27.08.2024.
12. GigaChat. Reestrovaja zapis' №20407 ot 14.12.2023. Rossijskij reestr programmnogo obespechenija. Ministerstvo cifrovogo razvitija, svjazi i massovyh kommunikacij Rossijskoj Federacii Available from: https://reestr.digital.gov.ru/reestr/2011617. Сited 27.08.2024. (In Russ.)
13. iz.ru Izvestija. Available from: https://iz.ru/1665343/2024-03-14/kolichestvo-polzovatelei-gigachat-i-kandinsky-dostiglo-18-mln. Сited 27.08.2024. (In Russ.)]
14. Shaderkina VA. ChatGPT v medicine: vozmozhnosti i ogranichenija. Rossijskij zhurnal telemediciny i jelektronnogo zdravoohranenija. 2024; 10(1): 33-43. (In Russ.)
15. tass.ru TASS Available from: https://tass.ru/obschestvo/19975699. Сited 27.08.2024. (In Russ.)
16. Safranek CW, Sidamon-Eristoff AE, Gilson A, Chartash D. The Role of Large Language Models in Medical Education: Applications and Implications. JMIR Med Educ. 2023; 9: e50945. doi: 10.2196/50945.
17. ChatClinic Available from: https://www.chatclinic.ai/about. Сited 27.08.2024.
18. Hronicheskaja serdechnaja nedostatochnost'. Rubrikator klinicheskih rekomendacii Minzdrava Rossii. Available from: https://cr.minzdrav.gov.ru/schema/156_1. Сited 27.08.2024. (In Russ.)
19. DALL·E 3. OpenAI, L.L.C. Available from: https://openai.com/index/dall-e-3. Сited 27.08.2024.
Review
For citations:
Astashev P.E., Penzin O.V., Subbotin S.A., Karpov O.E. The concept of utilizing Large Language Models for enhancing case-based learning in medical education. Medical Doctor and Information Technologies. 2024;(3):62-71. (In Russ.) https://doi.org/10.25881/18110193_2024_3_62