Preview

Medical Doctor and Information Technologies

Advanced search

Possibilities of applying machine learning methods to improve the quality of prenatal diagnosis of congenital malformations: scoping review

https://doi.org/10.25881/18110193_2025_3_22

Abstract

Machine learning algorithms are used in many areas of medicine. Prenatal screening (PS) is no exception. Implementing machine learning techniques to evaluate PS results can help overcome the problems inherent in human analysis: reduce subjectivity and inter-expert variability when reading medical images, reduce examination time, and stratify pregnant women into risk groups with greater reliability. The scoping review was conducted to evaluate the diagnostic performance of machine learning technologies in PS. Twenty-seven relevant papers were identified by through PubMed, Cochrane and eLibrary databases. All included papers demonstrated the potential of machine learning methods to detect, classify, or predict of the risk of congenital anomalies. Interpreting medical images, machine learning allows to reduce the diagnostic time, improve its quality, ensure screening performance in remote areas or in conditions of staff shortage and to maintain sufficient sensitivity and specificity, regardless of the doctor's qualifications. Algorithms based on metabolomic analysis have advantages in accuracy and efficiency in predicting chromosomal anomalies. Clinical decision support systems based on factors of anamnesis and results of prenatal diagnostics can improve the prediction of congenital anomalies in the first trimester of pregnancy, both in terms of screening accuracy and in reducing the cost of the screening program. However, current evidence is mainly derived from the implementation of machine learning systems with low autonomy, and the authors of most of the studies included in the analysis describe a number of limitations that must be taken into account when implementing such solutions.

About the Authors

D. S. Mironov
FSBEI HE «NSMU» MH RF
Russian Federation

Arkhangelsk



I. A. Spirin
FSBEI HE SPbSPMU MH RF
Russian Federation

Saint Petersburg



A. A. Usynina
FSBEI HE «NSMU» MH RF
Russian Federation

DSc

Arkhangelsk



V. A. Postoev
FSBEI HE «NSMU» MH RF
Russian Federation

PhD

Arkhangelsk



References

1. Makarentseva AO. Achievements of perinatal reform and the capacity for further reduction of infant mortality in Russia. Demographic Review. 2023; 10: 62-81. (In Russ.) doi: 10.17323/demreview.v10i3.17970.

2. Serov VN, Nesterova LA. Features of modern obstetrics. Akush Ginekol (Mosk). 2022; 3: 5-11. doi: 10.18565/aig.2022.3.5-11.

3. Anteneh RM, Tesema GA, Lakew AM, Feleke SF. Development and validation of a risk score to predict adverse birth outcomes using maternal characteristics in northwest Ethiopia: a retrospective followup study. Front Glob Womens Health. 2024; 5: 1458457. doi: 10.3389/FGWH.2024.1458457/BIBTEX.

4. Shetty N, Mantri S, Agarwal S, Potdukhe A, Wanjari MB, Taksande AB, et al. Unraveling the Challenges: A Critical Review of Congenital Malformations in Low Socioeconomic Strata of Developing Countries. Cureus. 2023; 15: e41800. doi: 10.7759/CUREUS.41800.

5. Oftedal A, Bekkhus M, Haugen GN, Czajkowski NO, Kaasen A. The impact of diagnosed fetal anomaly, diagnostic severity and prognostic ambiguity on parental depression and traumatic stress: a prospective longitudinal cohort study. Acta Obstet Gynecol Scand. 2022; 101: 1291-9. doi: 10.1111/aogs.14453.

6. Liehr T, Harutyunyan T, Williams H, Weise A. Non-Invasive Prenatal Testing in Germany. Diagnostics. 2022; 12. doi: 10.3390/DIAGNOSTICS12112816/S1.

7. Johnston M, Hui L, Bowman-Smart H, Taylor-Sands M, Pertile MD, Mills C. Disparities in integrating noninvasive prenatal testing into antenatal healthcare in Australia: a survey of healthcare professionals. BMC Pregnancy Childbirth. 2024; 24: 355. doi: 10.1186/S12884-024-06565-1.

8. Perrot A, Horn R. The ethical landscape(s) of non-invasive prenatal testing in England, France and Germany: findings from a comparative literature review. Eur J Hum Genet. 2022; 30: 676-81. doi: 10.1038/S41431-021-00970-2.

9. Gil MM, Quezada MS, Revello R, Akolekar R, Nicolaides KH. Analysis of cell-free DNA in maternal blood in screening for fetal aneuploidies: updated meta-analysis. Ultrasound in Obstetrics & Gynecology. 2015; 45: 249-66. doi: 10.1002/uog.14791.

10. Zhuchenko LA, Tamazjan GV. Diagnosis of congenital developmental defects in the system of comprehensive measures for child health care. Russian Bulletin of Obstetrician-Gynecologist. 2010; 10: 7-9. (In Russ.)

11. Prenatal detection rates charts | European Platform on Rare Disease Registration n.d. https://eu-rdplatform.jrc.ec.europa.eu/eurocat/eurocat-data/prenatal-screening-and-diagnosis_en?a=102#filter.

12. Frolova OG, Suhanova LP, Volgina VF, Grebennik TK. Prenatal diagnosis is the most important task of regional healthcare modernization programs Obstetrics and Gynecology. 2012: 75-8. (In Russ.)

13. Zhuchenko LA, Goloshubov PA, Andreeva EN, Kalashnikova EA, Judina EV, Izhevskaja VL. Analysis of the results of early prenatal screening activities of the national priority project "Health" in the Russian Federation regions. Results of Russian multicenter study "Audit-2014". Medical Genetics. 2014; 13: 3-54 (In Russ.)

14. Feduniw S, Golik D, Kajdy A, Pruc M, Modzelewski J, Sys D, et al. Application of Artificial Intelligence in Screening for Adverse Perinatal Outcomes—A Systematic Review. Healthcare (Switzerland). 2022; 10: 2164. doi: 10.3390/HEALTHCARE10112164/S1.

15. He F, Wang Y, Xiu Y, Zhang Y, Chen L. Artificial Intelligence in Prenatal Ultrasound Diagnosis. Front Med (Lausanne). 2021; 8. doi: 10.3389/FMED.2021.729978/PDF.

16. Espinoza J, Good S, Russell E, Lee W. Does the use of automated fetal biometry improve clinical work flow efficiency? J Ultrasound Med. 2013; 32: 847-50. doi: 10.7863/ULTRA.32.5.847.

17. Yazdi B, Zanker P, Wagner P, Sonek J, Pintoffl K, Hoopmann M, et al. Optimal caliper placement: manual vs automated methods. Ultrasound Obstet Gynecol. 2014; 43: 170-5. doi: 10.1002/UOG.12509.

18. Matthew J, Skelton E, Day TG, Zimmer VA, et al. Exploring a new paradigm for the fetal anomaly ultrasound scan: Artificial intelligence in real time. Prenat Diagn. 2022; 42: 49-59. doi: 10.1002/PD.6059.

19. Teder H, Paluoja P, Rekker K, Salumets A, Krjutškov K, Palta P. Computational framework for targeted high-coverage sequencing based NIPT. PLoS One. 2019; 14. doi: 10.1371/JOURNAL.PONE.0209139.

20. Arain Z, Iliodromiti S, Slabaugh G, David AL, Chowdhury TT. Machine learning and disease prediction in obstetrics. Curr Res Physiol. 2023; 6: 100099. doi: 10.1016/J.CRPHYS.2023.100099.

21. He F, Lin B, Mou K, Jin L, Liu J. A machine learning model for the prediction of down syndrome in second trimester antenatal screening. Clinica Chimica Acta. 2021; 521: 206-11. doi: 10.1016/J.CCA.2021.07.015.

22. Akbulut A, Ertugrul E, Topcu V. Fetal health status prediction based on maternal clinical history using machine learning techniques. Comput Methods Programs Biomed. 2018; 163: 87-100. doi: 10.1016/J.CMPB.2018.06.010.

23. Xu X, Wang L, Cheng X, Ke W, et al. Machine learning-based evaluation of application value of the USM combined with NIPT in the diagnosis of fetal chromosomal abnormalities. Mathematical Biosciences and Engineering. 2022; 4: 4260-76. doi: 10.3934/MBE.2022197.

24. Catic A, Gurbeta L, Kurtovic-Kozaric A, Mehmedbasic S, Badnjevic A. Application of Neural Networks for classification of Patau, Edwards, Down, Turner and Klinefelter Syndrome based on first trimester maternal serum screening data, ultrasonographic findings and patient demographics. BMC Med Genomics. 2018; 11: 1-12. doi: 10.1186/S12920-018-0333-2/TABLES/6.

25. Tricco AC, Lillie E, Zarin W, O’Brien KK, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018; 169: 467-73. doi: 10.7326/M18-0850.

26. Athalye C, van Nisselrooij A, Rizvi S, Haak MC, Moon-Grady AJ, Arnaout R. Deep-learning model for prenatal congenital heart disease screening generalizes to community setting and outperforms clinical detection. Ultrasound in Obstetrics & Gynecology. 2024; 63: 44-52. doi: 10.1002/UOG.27503.

27. Yang Y, Wu B, Wu H, Xu W, et al. Classification of normal and abnormal fetal heart ultrasound images and identification of ventricular septal defects based on deep learning. J Perinat Med. 2023; 51: 1052-8. doi: 10.1515/JPM-2023-0041/HTML.

28. Ji C, Liu K, Yang X, Cao Y, et al. A novel artificial intelligence model for fetal facial profile marker measurement during the first trimester. BMC Pregnancy Childbirth. 2023; 23. doi: 10.1186/S12884-023-06046-X.

29. Wu H, Wu B, Lai F, Liu P, et al. Application of Artificial Intelligence in Anatomical Structure Recognition of Standard Section of Fetal Heart. Comput Math Methods Med. 2023; 2023: 5650378. doi: 10.1155/2023/5650378.

30. Zhang L, Dong D, Sun Y, Hu C, et al. Development and Validation of a Deep Learning Model to Screen for Trisomy 21 During the First Trimester From Nuchal Ultrasonographic Images. JAMA Netw Open. 2022; 5: E2217854. doi: 10.1001/JAMANETWORKOPEN.2022.17854.

31. Wang X, Liu Z, Du Y, Diao Y, et al. Recognition of Fetal Facial Ultrasound Standard Plane Based on Texture Feature Fusion. Comput Math Methods Med. 2021; 2021: 6656942. doi: 10.1155/2021/6656942.

32. Arnaout R, Curran L, Zhao Y, Levine JC, Chinn E, Moon-Grady AJ. An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease. Nature Medicine. 2021; 27: 882-91. doi: 10.1038/s41591-021-01342-5.

33. Xie HN, Wang N, He M, Zhang LH, et al. Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound Obstet Gynecol. 2020; 56: 579-87. doi: 10.1002/UOG.21967.

34. Quader N, Hodgson AJ, Mulpuri K, Schaeffer E, Abugharbieh R. Automatic Evaluation of Scan Adequacy and Dysplasia Metrics in 2-D Ultrasound Images of the Neonatal Hip. Ultrasound Med Biol. 2017; 43: 1252-62. doi: 10.1016/j.ultrasmedbio.2017.01.012.

35. Lin M, Zhou Q, Lei T, Shang N, et al. Deep learning system improved detection efficacy of fetal intracranial malformations in a randomized controlled trial. NPJ Digit Med. 2023; 6: 191. doi: 10.1038/S41746-023-00932-6.

36. de Vries IR, van Laar JOEH, van der Hout, et al. Fetal electrocardiography and artificial intelligence for prenatal detection of congenital heart disease. Acta Obstet Gynecol Scand. 2023; 102: 1511. doi: 10.1111/AOGS.14623.

37. Wang X, Yang TY, Zhang YY, Liu XW, et al. Diagnosis of fetal total anomalous pulmonary venous connection based on the post-left atrium space ratio using artificial intelligence. Prenat Diagn. 2022; 42: 1323-31. doi: 10.1002/PD.6220.

38. Gong Y, Zhang Y, Zhu H, Lv J, et al. Fetal Congenital Heart Disease Echocardiogram Screening Based on DGACNN: Adversarial One-Class Classification Combined with Video Transfer Learning. IEEE Trans Med Imaging. 2020; 39: 1206-22. doi: 10.1109/TMI.2019.2946059.

39. Xu L, Liu M, Shen Z, Wang H, et al. DW-Net: A cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography. Computerized Medical Imaging and Graphics. 2020; 80: 101690. doi: 10.1016/J.COMPMEDIMAG.2019.101690.

40. Jamshidnezhad A, Hosseini SM, Mahmudi M, Mohammadi-Asl J. A machine learning technology to improve the risk of non-invasive prenatal tests. Technol Health Care. 2022; 30: 951-65. doi: 10.3233/THC-213628.

41. Dong N, Gu H, Liu D, Wei X, et al. Complement factors and alpha-fetoprotein as biomarkers for noninvasive prenatal diagnosis of neural tube defects. Ann N Y Acad Sci. 2020; 1478: 75-91. doi: 10.1111/NYAS.14443.

42. Yang J, Ding X, Zhu W. Improving the calling of non-invasive prenatal testing on 13-/18-/21-trisomy by support vector machine discrimination. PLoS One. 2018; 13. doi: 10.1371/JOURNAL.PONE.0207840.

43. Troisi J, Lombardi M, Scala G, Cavallo P, et al. A screening test proposal for congenital defects based on maternal serum metabolomics profile. Am J Obstet Gynecol. 2023; 228: 342.e1-342.e12. doi: 10.1016/J.AJOG.2022.08.050.

44. Avisdris N, Link Sourani D, Ben-Sira L, Joskowicz L, et al. Improved differentiation between hypo/hypertelorism and normal fetuses based on MRI using automatic ocular biometric measurements, ocular ratios, and machine learning multi-parametric classification. Eur Radiol. 2023; 33: 54-63. doi: 10.1007/S00330-022-08976-0.

45. Koivu A, Korpimäki T, Kivelä P, Pahikkala T, Sairanen M. Evaluation of machine learning algorithms for improved risk assessment for Down’s syndrome. Comput Biol Med. 2018; 98: 1-7. doi: 10.1016/J.COMPBIOMED.2018.05.004.

46. Neocleous AC, Syngelaki A, Nicolaides KH, Schizas CN. Two-stage approach for risk estimation of fetal trisomy 21 and other aneuploidies using computational intelligence systems. Ultrasound in Obstetrics & Gynecology. 2018; 51: 503-8. doi: 10.1002/UOG.17558.

47. Neocleous AC, Nicolaides KH, Schizas CN. Intelligent Noninvasive Diagnosis of Aneuploidy: Raw Values and Highly Imbalanced Dataset. IEEE J Biomed Health Inform. 2017; 21: 1271-9. doi: 10.1109/JBHI.2016.2608859.

48. Neocleous AC, Nicolaides KH, Schizas CN. First Trimester Noninvasive Prenatal Diagnosis: A Computational Intelligence Approach. IEEE J Biomed Health Inform. 2016; 20: 1427-38. doi: 10.1109/JBHI.2015.2462744.

49. Sun Y, Zhang L, Dong D, Li X, et al. Application of an individualized nomogram in first-trimester screening for trisomy 21. Ultrasound in Obstetrics & Gynecology. 2021; 58: 56. doi: 10.1002/UOG.22087.

50. Zhou X, Ji C, Sun L, Yin L, et al. Clinical value of fetal facial profile markers during the first trimester. BMC Pregnancy Childbirth. 2022; 22: 738. doi: 10.1186/S12884-022-05028-9.

51. Gembicki M, Hartge DR, Dracopoulos C, Weichert J. Semiautomatic Fetal Intelligent Navigation Echocardiography Has the Potential to Aid Cardiac Evaluations Even in Less Experienced Hands. Journal of Ultrasound in Medicine. 2020; 39: 301-9. doi: 10.1002/JUM.15105.

52. Holm TL, Murati MA, Hoggard E, Zhang L, Dietz KR. Fetal Intelligent Navigation Echocardiography (FINE) Detects 98% of Congenital Heart Disease. J Ultrasound Med. 2018; 37: 2595-601. doi: 10.1002/JUM.14616.

53. Ma M, Li Y, Chen R, Huang C, Mao Y, Zhao B. Diagnostic performance of fetal intelligent navigation echocardiography (FINE) in fetuses with double-outlet right ventricle (DORV). International Journal of Cardiovascular Imaging. 2020; 36: 2165-72. doi:10.1007/S10554-020-01932-3/METRICS.


Review

For citations:


Mironov D.S., Spirin I.A., Usynina A.A., Postoev V.A. Possibilities of applying machine learning methods to improve the quality of prenatal diagnosis of congenital malformations: scoping review. Medical Doctor and Information Technologies. 2025;(3):22-35. (In Russ.) https://doi.org/10.25881/18110193_2025_3_22

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1811-0193 (Print)
ISSN 2413-5208 (Online)