Preview

Medical Doctor and Information Technologies

Advanced search

Rehabilitation in the metaverse: a steady trend or contextual solutions? (Systematic review)

https://doi.org/10.25881/18110193_2025_3_6

Abstract

The concept of the metaverse is a new, actively developing idea with potential in various fields of medicine. The combination of multisensory stimulation and mutual interaction opens up a wide range of possibilities for the application of metaverse therapy technologies in the context of a pandemic. The aim of this review is to analyze the scope of application and development of the metaverse perspective in the context of a crisis. Methods: The authors searched PubMed, ScienceDirect using the keyword "metaverse", among which a manual search was conducted for studies related to various aspects of rehabilitation. Of the 1393 publications found, 37 were selected for further analysis. Results: Metaverse technologies are used in medical rehabilitation, helping to restore physical and cognitive functions. Creating digital twins-avatars and using machine learning to process patient data can make rehabilitation more personalized and effective. Discussion: The concept of the metaverse creates a unique environment based on the synergy of high technology and social interaction. The new opportunities offered by the use of the metaverse in medicine can radically change rehabilitation, making it more effective and accessible.

About the Authors

A. I. Nagornaia
Siberian State Medical University
Russian Federation

Tomsk



E. M. Kamenskikh
Siberian State Medical University
Russian Federation

Ph.D.

Tomsk



T. S. Sokolova
Siberian State Medical University
Russian Federation

Ph.D.

Toms



O. S. Fedorova
Siberian State Medical University
Russian Federation

DSc, professor

Tomsk



References

1. Стратегия_цифровой_трансформации_отрасли_Здравоохранение.pdf. Accessed May 17, 2023. https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/057/382/original/%D0%A1%D1%82%D1%80%D0%B0%D1%82%D0%B5%D0%B3%D0%B8%D1%8F_%D1%86%D0%B8%D1%84%D1%80%D0%BE%D0%B2%D0%BE%D0%B9_%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D0%B8_%D0%BE%D1%82%D1%80%D0%B0%D1%81%D0%BB%D0%B8_%D0%97%D0%B4%D1%80%D0%B0%D0%B2%D0%BE%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5.pdf?1626341177.

2. Usmani SS, Sharath M, Mehendale M. Future of mental health in the metaverse. Gen Psychiatry. 2022; 35(4): e100825. doi: 10.1136/gpsych-2022-100825.

3. Yang D, Zhou J, Chen R, et al. Expert consensus on the metaverse in medicine. Clin EHealth. 2022; 5: 1-9. doi: 10.1016/j.ceh.2022.02.001.

4. Lagutin M.D., Tyufilin D.S, Kobyakova O.S., Deev I.A. Metaverses in Medicine: Assessing the Prospects for Practical Healthcare. e. Medical doctor and information technology. 2023; 2: 4-15. (In Russ.) doi: 10.25881/18110193_2023_2_4.

5. Wang C, Kong J, Qi H. Areas of Research Focus and Trends in the Research on the Application of VR in Rehabilitation Medicine. Healthcare. 2023; 11(14): 2056. doi: 10.3390/healthcare11142056.

6. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. The BMJ. Accessed September 7, 2023.

7. Zotero. Your personal research assistant. Accessed December 4, 2023.

8. Moon HJ, Han S. Perspective: Present and Future of Virtual Reality for Neurological Disorders. Brain Sci. 2022; 12(12): 1692. doi: 10.3390/brainsci12121692.

9. Cheung JCW, Cheung DSK, Ni M, et al. X-reality for phantom limb management for amputees: A systematic review and meta-analysis. Eng Regen. 2023; 4(2): 134-151. doi: 10.1016/j.engreg.2023.02.002.

10. Cho KH, Park JB, Kang A. Metaverse for Exercise Rehabilitation: Possibilities and Limitations. Int J Environ Res Public Health. 2023; 20(8): 5483. doi: 10.3390/ijerph20085483.

11. Wu TC, Ho CTB. A scoping review of metaverse in emergency medicine. Australas Emerg Care. Published online August 8, 2022. doi: 10.1016/j.auec.2022.08.002.

12. Lee CW. Application of Metaverse Service to Healthcare Industry: A Strategic Perspective. Int J Environ Res Public Health. 2022; 19(20): 13038. doi: 10.3390/ijerph192013038.

13. Petrigna L, Musumeci G. The Metaverse: A New Challenge for the Healthcare System: A Scoping Review. J Funct Morphol Kinesiol. 2022; 7(3): 63. doi: 10.3390/jfmk7030063.

14. Zhou H, Gao JY, Chen Y. The paradigm and future value of the metaverse for the intervention of cognitive decline. Front Public Health. 2022; 10. doi: 10.3389/fpubh.2022.1016680.

15. Calabrò RS, Cerasa A, Ciancarelli I, et al. The Arrival of the Metaverse in Neurorehabilitation: Fact, Fake or Vision? Biomedicines. 2022; 10(10): 2602. doi: 10.3390/biomedicines10102602.

16. Tacchino A, Podda J, Bergamaschi V, Pedullà L, Brichetto G. Cognitive rehabilitation in multiple sclerosis: Three digital ingredients to address current and future priorities. Front Hum Neurosci. 2023; 17: 1130231. doi: 10.3389/fnhum.2023.1130231.

17. Lloyd DG, Saxby DJ, Pizzolato C, et al. Maintaining soldier musculoskeletal health using personalised digital humans, wearables and/or computer vision. J Sci Med Sport. 2023; 26: S30-S39. doi: 10.1016/ j.jsams.2023.04.001.

18. Qian P, Yang D, Bai C. Metaverse: Freezing the time. Clin EHealth. 2023; 6: 29-35. doi: 10.1016/j.ceh.2023.06.002.

19. Calabrò RS, Morone G. Advancing Rehabilitation Medicine with the Metaverse: Opportunities and Challenges. Brain Sci. 2025; 15(3): 321. doi: 10.3390/brainsci15030321.

20. Donegan T, Sanchez-Vives MV. Perception and control of a virtual body in immersive virtual reality for rehabilitation. Curr Opin Neurol. 2024; 37(6): 638. doi: 10.1097/WCO.0000000000001321.

21. Morone G, Ciancarelli I, Calabrò RS, Cerasa A, Iosa M, Gimigliano F. MetaRehabVerse: The Great Opportunity to Put the Person’s Functioning and Participation at the Center of Healthcare. Neurorehabil Neural Repair. 2025; 39(3): 241-255. doi: 10.1177/15459683241309587.

22. Kaur P, Prakash G, Agarwal R, Virmani N, Alghafes R. Emerging technologies for basic human needs: A TCCM approach to systematically reviewing metaverse intervened wellness. Technol Forecast Soc Change. 2025; 217: 124190. doi: 10.1016/j.techfore.2025.124190.

23. Kasrineh MR, Baravati FB, Lee J, Zarei M, Taheri-Soodejani M, Tabatabaei SM. Extended Reality for Rehabilitation and Care of Patients after Open Heart Surgery: A Systematic Review. Heliyon. Published online March 6, 2025: e43105. doi: 10.1016/j.heliyon.2025.e43105.

24. Keny SM, Bagaria V, Sahu D, Brkljac M, Logishetty K, Keny AA. Remote patient monitoring: A current concept update on the technology adoption in the realm of orthopedics. J Clin Orthop Trauma. 2024; 51: 102400. doi: 10.1016/j.jcot.2024.102400.

25. Parisi A, Bellinzona F, Di Lernia D, et al. Efficacy of Multisensory Technology in Post-Stroke Cognitive Rehabilitation: A Systematic Review. J Clin Med. 2022; 11(21): 6324. doi: 10.3390/jcm11216324.

26. Lan L, Sikov J, Lejeune J, et al. A Systematic Review of using Virtual and Augmented Reality for the Diagnosis and Treatment of Psychotic Disorders. Curr Treat Options Psychiatry. Published online June 14, 2023: 1-21. doi: 10.1007/s40501-023-00287-5.

27. Moon I, An Y, Min S, Park C. Therapeutic Effects of Metaverse Rehabilitation for Cerebral Palsy: A Randomized Controlled Trial. Int J Environ Res Public Health. 2023; 20(2): 1578. doi: 10.3390/ijerph20021578.

28. Orr E, Arbel T, Levy M, et al. Virtual reality in the management of patients with low back and neck pain: a retrospective analysis of 82 people treated solely in the metaverse. Arch Physiother. 2023; 13: 11. doi: 10.1186/s40945-023-00163-8.

29. Lee JH, Lee TS, Yoo SY, et al. Metaverse-based social skills training programme for children with autism spectrum disorder to improve social interaction ability: an open-label, singlecentre, randomised controlled pilot trial. eClinicalMedicine. 2023; 61: 102072. doi: 10.1016/j.eclinm.2023.102072.

30. Montalban X, Graves J, Midaglia L, et al. A smartphone sensor-based digital outcome assessment of multiple sclerosis. Mult Scler Houndmills Basingstoke Engl. 2022; 28(4): 654-664. doi: 10.1177/13524585211028561.

31. Stamm O, Dahms R, Reithinger N, Ruß A, Müller-Werdan U. Virtual reality exergame for supplementing multimodal pain therapy in older adults with chronic back pain: a randomized controlled pilot study. Virtual Real. 2022; 26(4): 1291. doi: 10.1007/s10055-022-00629-3.

32. Liang H, Li J, Wang Y, Pan J, Zhang Y, Dong X. Metaverse Virtual Social Center for the Elderly Communication During the Social Distancing. Virtual Real Intell Hardw. 2023; 5(1): 68-80. doi: 10.1016/j.vrih.2022.07.007.

33. Vera AD, Yuce MR. Forearm Dual-Triboelectric Sensor (FDTS) for assistive Human-Machine-Interfaces (HMIs) and robotic control with potential uses in prosthetic devices. Nano Energy. 2023; 111: 108366. doi: 10.1016/j.nanoen.2023.108366.

34. Shah SHH, Karlsen AST, Solberg M, Hameed IA. A social VR-based collaborative exergame for rehabilitation: codesign, development and user study. Virtual Real. Published online November 28, 2022: 1-18. doi: 10.1007/s10055-022-00721-8.

35. Amado I, Brénugat-Herné L, Orriols E, et al. A Serious Game to Improve Cognitive Functions in Schizophrenia: A Pilot Study. Front Psychiatry. 2016; 7: 64. doi: 10.3389/fpsyt.2016.00064.

36. Park KM, Ku J, Choi SH, et al. A virtual reality application in role-plays of social skills training for schizophrenia: a randomized, controlled trial. Psychiatry Res. 2011; 189(2): 166-172. doi: 10.1016/j.psychres.2011.04.003.

37. Sohn BK, Hwang JY, Park SM, et al. Developing a Virtual Reality-Based Vocational Rehabilitation Training Program for Patients with Schizophrenia. Cyberpsychology Behav Soc Netw. 2016; 19(11): 686-691. doi: 10.1089/cyber.2016.0215.

38. Momosaki R, Tora K, Shirai Y, Funao H. Strategies to Promote Physical Activity among Sedentary Metaverse Residents. Prog Rehabil Med. 2024; 9: 20240038. doi: 10.2490/prm.20240038.

39. Pascucci S, Forte G, Angelini E, et al. Michelangelo Effect in Virtual Sculpturing: Prospective for Motor Neurorehabilitation in the Metaverse. J Cogn. 7(1): 17. doi: 10.5334/joc.345.

40. Mizuta R, Maeda N, Tashiro T, et al. Effectiveness of Metaverse Space–Based Exercise Video Distribution in Young Adults: Randomized Controlled Trial. JMIR MHealth UHealth. 2024; 12: e46397. doi: 10.2196/46397.

41. Chen H, He D, Xiong K, et al. An AI-enabled self-sustaining sensing lower-limb motion detection system for HMI in the metaverse. Nano Energy. 2025; 136: 110724. doi: 10.1016/j.nanoen.2025.110724.

42. Zhang C, Zhang L, Tian Y, An Z, Li B, Li D. AI-enabled full-body dynamic avatar reconstruction using triboelectric smart clothing for metaverse applications. eScience. Published online January 22, 2025: 100373. doi: 10.1016/j.esci.2025.100373.

43. Wang R, Jiang L, Li J, et al. Tactile and kinesthetic communication glove with fusion of triboelectric sensing and pneumatic actuation. Nano Energy. 2024; 131: 110273. doi: 10.1016/j.nanoen.2024.110273.

44. Antipov V.M., Badarin A.A., Kurkin S.A., Kiselev A.R., Hramov A.E. Hardware-software complex for rehabilitation of patients with cognitive and motor disorders. Medical doctor and information technology. 2024; 4: 38-47. (In Russ.)

45. The Lancet Public Health null. Reinvigorating the public health response to dementia. Lancet Public Health. 2021; 6(10): e696. doi: 10.1016/S2468-2667(21)00215-2.

46. Mowszowski L, Batchelor J, Naismith SL. Early intervention for cognitive decline: can cognitive training be used as a selective prevention technique? Int Psychogeriatr. 2010; 22(4): 537-548. doi: 10.1017/S1041610209991748.

47. Shen C, Rolls ET, Cheng W, et al. Associations of Social Isolation and Loneliness With Later Dementia. Neurology. 2022; 99(2): e164-e175. doi: 10.1212/WNL.0000000000200583.

48. Woods B, O’Philbin L, Farrell EM, Spector AE, Orrell M. Reminiscence therapy for dementia. Cochrane Database Syst Rev. 2018; 2018(3): CD001120. doi: 10.1002/14651858.CD001120.pub3.

49. Myles BS, Barnhill GP, Hagiwara T, Griswold DE, Simpson RL. A Synthesis of Studies on the Intellectual, Academic, Social/ Emotional and Sensory Characteristics of Children and Youth with Asperger Syndrome. Educ Train Ment Retard Dev Disabil. 2001; 36(3): 304-311.

50. https://painstudy.ru/org/iasp.htm. Accessed October 1, 2023.

51. Итоги конференции «Высокие ампутации нижних конечностей у детей и взрослых». https:// www.angiolsurgery.org/news/2019/05/31/

52. Schone HR, Baker CI, Katz J, et al. Making sense of phantom limb pain. J Neurol Neurosurg Psychiatry. 2022; 93(8): 833-843. doi: 10.1136/jnnp-2021-328428.

53. XRHealth Virtual Clinic: At-Home Virtual Reality Therapy. XRHealth. Accessed September 19, 2023. https://www.xr.health/

54. Pizzolato C, Gunduz MA, Palipana D, et al. Non-invasive approaches to functional recovery after spinal cord injury: Therapeutic targets and multimodal device interventions. Exp Neurol. 2021; 339: 113612. doi: 10.1016/j.expneurol.2021.113612.

55. Pizzolato C, Saxby DJ, Palipana D, et al. Neuromusculoskeletal Modeling-Based Prostheses for Recovery After Spinal Cord Injury. Front Neurorobotics. 2019; 13. https://www.frontiersin.org/articles/10.3389/fnbot.2019.00097

56. Kunz L, Schröder TN, Lee H, et al. Reduced grid-cell-like representations in adults at genetic risk for Alzheimer’s disease. Science. 2015; 350(6259): 430-433. doi: 10.1126/science.aac8128.


Review

For citations:


Nagornaia A.I., Kamenskikh E.M., Sokolova T.S., Fedorova O.S. Rehabilitation in the metaverse: a steady trend or contextual solutions? (Systematic review). Medical Doctor and Information Technologies. 2025;(3):6-21. (In Russ.) https://doi.org/10.25881/18110193_2025_3_6

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1811-0193 (Print)
ISSN 2413-5208 (Online)