Preview

Medical Doctor and Information Technologies

Advanced search

Hepatitis A waterborne outbreak model using agent-based approach and location intelligence to solve research and practical epidemiological problems

https://doi.org/10.25881/18110193_2022_1_62

Abstract

Here we describe the possibilities of joint use of agent-based modeling and location intelligence based on geoinformation technologies for solving epidemiological problems.

This approach has an important advantage allowing close to real-life epidemic progression visualization (hepatitis A) in the “digital twin” of the city. The instrument we developed could be used for both research and practical purposes, as well as for managerial decision-making.

About the Authors

I. S. Shmyr
N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology
Russian Federation

Shmyr I.S.

Moscow



E. R. Gerasimuk
Dubna State University
Russian Federation

Gerasimuk E.R., PhD

Dubna



D. A. Galkin
Marketing Logic Russia LLC
Russian Federation

Galkin D.A.

Moscow



M. N. Asatryan
N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology
Russian Federation

Asatryan M.N., PhD

Moscow



D. V. Yakimtsev
Marketing Logic Russia LLC
Russian Federation

Yakimtsev D.V.

Moscow



I. F. Ershov
N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology
Russian Federation

Ershov I.F.

Moscow



O. G. Nikolaeva
N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology
Russian Federation

Nikolaeva O.G., PhD

Moscow



O. V. Penzin
Pirogov National Medical and Surgical Center
Russian Federation

Penzin O.V., PhD

Moscow



T. A. Semenenko
N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology
Russian Federation

Semenenko T.A., Dr. Sci. (Medicine)

Moscow



References

1. Chowell G, Sattenspiel L, Bansal S, Viboud C. Mathematical models to characterize early epidemic growth: A review. Phys Life Rev. 2016; 18: 66-97. doi:10.1016/j.plrev.2016.07.005.

2. Boev BV, Salman ER, Asatryan MN. Application of computer tools for the prediction of water outbreaks of hepatitis A manmade with assessing the effectiveness of counteraction. Epidemiology and vaccinal prevention. 2010; 3(52): 57-62. (In Russ).

3. Asatryan МN, Gerasimuk ER, Logunov DY, et al. Predicting the dynamics of Covid-19 incidence and planning preventive vaccination measures for Moscow population based on mathematical modeling. Journal of microbiology, epidemiology and immunobiology. 2020; 97(4): 289-302. (In Russ). doi:10.36233/0372-9311-2020-97-4-1.

4. Tracy M, Cerdá M, Keyes K. Agent-Based Modeling in Public Health: Current Applications and Future Directions. Annu Rev Public Health. 2018; 39(1): 77-94. doi:10.1146/annurev-publhealth-040617-014317.

5. Willem L, Verelst F, Bilcke J, Hens N, Beutels P. Lessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006-2015). BMC Infect Dis. 2017; 17(1). doi:10.1186/s12879-017-2699-8.

6. MacNamee B, Cunningham P. Creating socially interactive no-player characters: The μ-SIV system. Int J Intell Games & Simulation. 2003; 2: 28-35.

7. Clarke K. Advances in Geographic Information Systems. Comput Environ Urban Syst. 1986; 10(3-4): 175-184. doi:10.1016/0198-9715(86)90006-2.

8. Perez L, Dragicevic S. An agent-based approach for modeling dynamics of contagious disease spread. Int J Health Geogr. 2009; 8(1): 50. doi:10.1186/1476-072x-8-50.

9. Hunter E, Mac Namee B, Kelleher J. Correction: An open-data-driven agent-based model to simulate infectious disease outbreaks. PLoS One. 2019; 14(1): e0211245. doi:10.1371/journal.pone.0211245.

10. Negri E, Fumagalli L, Macchi M. A Review of the Roles of Digital Twin in CPS-based Production Systems. Procedia Manuf. 2017; 11: 939-948. doi:10.1016/j.promfg.2017.07.198.

11. Rosen R, von Wichert G, Lo G, et al. About The Importance of Autonomy and Digital Twins for the Future of Manufacturing. IFAC-PapersOnLine. 2015; 48(3): 567-572. doi:10.1016/j.ifacol.2015.06.141.

12. Onishchenko GG, Shakhgildyan IV, Petrov EY. Waterborne outbreak of hepatitis A in Nizhni Novgorod. Epidemiology and infectious diseases. 2007; 3: 4-9. (In Russ).

13. Burgasova OA, Sayapina LV, Volkova VM, et al. Analysis and Forecasting of Viral Hepatitis A Morbidity in the Russian Federation Using the Wald’s Schedule. Problems of Particularly Dangerous Infections. 2020; 1: 69-75. (In Russ). doi:10.21055/0370-1069-2020-1-69-75.

14. O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossiiskoi Federatsii v 2020 godu: Gosudarstvennyi doklad. Moscow: Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing; 2021. 256 p. (In Russ).

15. Mukomolov SL, Mikhailov MI, Semenenko TA, et al. Review: Burden of hepatitis A in Russian Federation. Epidemiology and vaccinal prevention. 2014; 6(79): 24-34. (In Russ).

16. Virusnye gepatity v Rossiiskoi Federatsii. Analiticheskii obzor. 11 vypusk. Ed by Pokrovskii V.I., Totolyan A.A. Saint Petersburg: Pasteur Institute; 2018. (In Russ).

17. Asratyan AA, Sipacheva NB, Gotvyanskaya TP, et al. Seroepidemiological characteristics of hepatitis A in some areas of Central Federal District of Russia. Epidemiology and infectious diseases. Current items. 2018; 4: 17-23. (In Russ). doi:10.18565/epidem.2018.4.17-23.


Review

For citations:


Shmyr I.S., Gerasimuk E.R., Galkin D.A., Asatryan M.N., Yakimtsev D.V., Ershov I.F., Nikolaeva O.G., Penzin O.V., Semenenko T.A. Hepatitis A waterborne outbreak model using agent-based approach and location intelligence to solve research and practical epidemiological problems. Medical Doctor and Information Technologies. 2022;(1):62-71. (In Russ.) https://doi.org/10.25881/18110193_2022_1_62

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1811-0193 (Print)
ISSN 2413-5208 (Online)