Decision support tools for maxillofacial tumors diagnostics
https://doi.org/10.25881/18110193_2022_4_40
Abstract
The article presents originally developed intelligent decision support tools designed for precancerous lesions and tumors of the oral mucosa diagnostics.
Background. There is well recognized need for better primary health care in patients with suspected maxillofacial tumors.
Aim: develop intelligent decision support tools for tumors of the oral mucosa diagnostics.
Methods. Developed method was based on generalization of the practicing doctors experience. Diagnostic parameters of the disease were studied during the first stage of the development. All diagnostic parameters were divided into three large groups: patients complaints, patient’s work-up, risk factors and patients lifestyle. At the next stage of analysis each data group was presented as a parameter set. Each parameter set and each singular parameter were assigned a weight coefficient by expert evaluation method. The sum of the weighting coefficients for each group of parameters and for each singular parameter was equal to one for convenience. Use of these coefficients enabled transition made to indicators that allow assessing the expectation of confirmation of the expected prognosis.
Results. Using weight data we developed production knowledge models and implemented the fuzzy set technique, which resulted in models that allow assessing the degree of confidence in the diagnosis. This approach will ensure that doctors get informed decisions summarizing the collective knowledge of medical experts. Such intelligent solutions can only be considered as a kind of hint to a specialist, instead of the only, uncontested option. As the system functions, the models will be refined, which will increase the efficiency of the expert system.
Conclusions. The results of the study propose a new approach to classification, as well as highlight the structure of the parameters allowing suspicion of a malignancy in patients. We also developed new formal diagnostic method of maxillofacial cancer which suggest further patient management. Production knowledge base for automated diagnosis of the oral mucosa pathologies was created.
Practical application. This research results could be used as an additional tool that allows the doctor to verify diagnosis or treatment strategy of patients.
About the Authors
G. B. BurdoRussian Federation
DSc, professor
Tver
S. N. Lebedev
Russian Federation
PhD, Associate Professor
Tver
Y. V. Lebedeva
Russian Federation
PhD
Tver
I. S. Lebedev
Russian Federation
Tver
References
1. Antonova IV, CHikina NA. Ekspertnaya sistema ocenki riska razvitiya zabolevanij kak osnova sistemy medicinskogo strahovaniya profpatologii. Sovremennye informacionnye i elektronnye tekhnologii. 2013; 1(14): 99-101. (In Russ.)
2. Zlokachestvennye novoobrazovaniya v Rossii v 2018 godu (zabolevaemost’ i smertnost’). A.D. Kaprin, V.V. Starinskiy, G.V. Petrovа, editors. Moskva: FGBU «MNIOI im. P.A. Gercena» — filial FGBU «NMIC radiologii» Minzdrava Rossii, 2019. 250 р. (In Russ.)
3. Davydov AB, Lebedev SN, Rumyanceva IK, Nazarov VI. Profilaktika i rannyaya diagnostika — prioritetnye napravleniya v onkostomatologii Tverskogo regiona. Verhnevolzhskij medicinskij zhurnal. 2015; 13(1): 11-16. (In Russ.)
4. Sostoyanie onkologicheskoj pomoshchi naseleniyu Rossii v 2018 godu. A.D. Kaprin, V.V. Starinskiy, G.V. Petrovа, editors. Moskva: FGBU «MNIOI im. P.A. Gercena» — filial FGBU «NMIC radiologii» Minzdrava Rossii, 2019. 236 s. (In Russ.)
5. Shigina AA. Primenenie tekhnologii ekspertnoj sistemy pri postroenii intellektual’nyh sistem podderzhki prinyatiya reshenij. Nauchno-metodicheskij elektronnyj zhurnal Koncept. 2014; 20: 3566-3570. (In Russ.)
6. Lebedev SN, Davydov AB, Burdo GB. Osnovy primeneniya ekspertnyh sistem iskusstvennogo intellekta v rannej diagnostike karcinomy polosti rta. Verhnevolzhskij medicinskij zhurnal. 2020; 19(3): 27-29. (In Russ.)
7. Burdo GB, Bolotov AN. Mekhanizm mashinnogo obucheniya v sistemah avtomatizirovannogo proektirovaniya. Vestnik Tverskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki. 2021; 4(12): 66-75. (In Russ.)
8. Rybina GV. Osnovy postroeniya intellektual’nyh sistem: uchebnoe posobie. M.: Finansy i statistika; Infra-M, 2010. 432 р. (In Russ.)
9. Gavrilova TA, Horoshevskij VF. Bazy znanij intellektual’nyh sistem. Sankt Peterburg: Piter-press, 2016. 162 р. (In Russ.)
10. Zade L. Ponyatie lingvisticheskoj peremennoj i ee primenenie k ponyatiyu priblizhennyh reshenij. M.: Mir. 1976 (In Russ.)
11. D’yakov V, Kruglov V. Matematicheskie pakety rasshireniya MATLAB: special’nyj spravochnik. SPb.: Piter, 2001. 480 р. (In Russ.)
Review
For citations:
Burdo G.B., Lebedev S.N., Lebedeva Y.V., Lebedev I.S. Decision support tools for maxillofacial tumors diagnostics. Medical Doctor and Information Technologies. 2022;(4):40-51. (In Russ.) https://doi.org/10.25881/18110193_2022_4_40