

ЛЕОНОВА М.Б..

ФГБУ «НМХЦ им. Н. И. Пирогова», Москва, Россия, e-mail: leonovamb@pirogov-center.ru

СУББОТИН С.А..

ФГБУ «НМХЦ им. Н. И. Пирогова», Москва, Россия, e-mail: subbotinsa@pirogov-center.ru

ПЕНЗИН О.В.,

к.м.н., ФГБУ «НМХЦ им. Н. И. Пирогова», Москва, Россия, e-mail: penzinov@pirogov-center.ru

КАРПОВ О.Э.,

академик РАН, д.м.н., профессор, ФГБУ «НМХЦ им. Н. И. Пирогова», Москва, Россия, e-mail: karpovoe@pirogov-center.ru

СПЕЦИФИКА АКСЕЛЕРАЦИИ ЦИФРОВЫХ РЕШЕНИЙ В МЕДИЦИНСКОЙ ОРГАНИЗАЦИИ

DOI: 10.25881/18110193_2023_1_50

Аннотация.

В статье описан ландшафт инноваций в сфере медицины в целом и стартапов цифровых решений в частности, представлен опыт ФГБУ «НМХЦ им. Н.И. Пирогова» Минздрава России в организации и проведении акселерационной программы для медицинских стартапов, сформулированы предложения по созданию эффективных механизмов трансляции инновационных технологий и продуктов в клиническую практику.

Ключевые слова: акселератор, акселерационная программа, стартап, медицинский стартап, акселератор медицинских стартапов.

Для цитирования: Леонова М.Б., Субботин С.А., Пензин О.В., Карпов О.Э. Специфика акселерации цифровых решений в медицинской организации. Врач и информационные технологии. 2023; 1: 50-61. doi: 10.25881/18110193_2023_1_50.

LEONOVA M.B.,

Pirogov National Medical and Surgical Center, Moscow, Russia, e-mail: leonovamb@pirogov-center.ru

SUBBOTIN S.A.,

Pirogov National Medical and Surgical Center, Moscow, Russia, e-mail: subbotinsa@pirogov-center.ru

PENZIN O.V.,

PhD, Pirogov National Medical and Surgical Center, Moscow, Russia, e-mail: penzinov@pirogov-center.ru

KARPOV O.E.,

Academician of the RAS, DSc, Prof., Pirogov National Medical and Surgical Center, Moscow, Russia, e-mail: karpovoe@pirogov-center.ru

SPECIFICS OF DIGITAL SOLUTIONS ACCELERATION IN A MEDICAL ORGANIZATION

DOI: 10.25881/18110193_2023_1_50

Abstract.

The article describes the landscape of innovations in the field of medicine in general and start-ups of digital solutions in particular, presents the experience of the Pirogov National Medical and Surgical Center in organization and performing of acceleration program for medical start-ups, proposals are formulated for creating effective translating mechanisms of innovative technologies and products into clinical practice.

Keywords: accelerator, acceleration program, start-up, medical startup, accelerator of medical start-ups.

For citation: Leonova M.B., Subbotin S.A., Penzin O.V., Karpov O.E. Specifics of digital solutions acceleration in a medical organization. Medical doctor and information technology. 2023; 1: 50-61. doi: 10.25881/18110193_2023_1_50.

ИННОВАЦИИ В МЕДИЦИНЕ И ЗДРАВООХРАНЕНИИ. КЛАССИФИКАЦИЯ

В 21 веке ключевыми факторами развития медицины и здравоохранения становятся увеличение продолжительности жизни и, как следствие, сопутствующий ему процесс увеличения как относительной доли, так и общего числа хронических заболеваний в популяции [1]. Одновременно с этим наблюдается тренд на рост ценности человеческого капитала, что ставит в приоритет социальных политик различных стран мира повышение качества жизни и продление срока активного долголетия своих граждан.

Чтобы в условиях ограниченных бюджетов всех уровней (государств, муниципалитетов, предприятий, самих граждан) здравоохранение не только оставалось на текущем уровне качества и доступности медицинской помощи, но и улучшало эти показатели, необходимо активнее использовать возможности интенсивного пути развития через инновации, в противоположность экстенсивному с количественным ростом числа медицинских учреждений, врачей и коек в них.

Человечество реализует инновации в медицине уже сотни лет. За это время сложилось понимание, какие инновации бывают, как их создавать, внедрять, поддерживать [2]. Инновации в сфере здравоохранения направлены на повышение эффективности деятельности первичного звена, оптимизацию использования фондов, внедрение ресурсосберегающих технологий, способствующих максимально широкому внедрению принципов доказательной медицины и научно-обоснованных подходов к ведению пациентов по различным видам медицинской помощи на всех уровнях ее оказания.

Результатами инновационной деятельности в здравоохранении являются развитие медицинских технологий оздоровления, лечения, управления процессами в медицинской отрасли, получение новых медицинских товаров, технологий или услуг, обладающих конкурентными преимуществами [3].

Существуют различные способы классификации инноваций: по значимости, направленности, месту реализации, глубине изменения, масштабу распространения, месту в процессе производства и т.д. [4]. В 2018 г. вышло последнее на текущий момент, четвертое издание «Руководство Осло. Рекомендации по сбору и анализу данных по инновациям» [5], в нем инновации подразделяются на четыре типа: продуктовые, процессные, организационные и маркетинговые.

С позиции управления инновационной деятельностью выделяют следующие виды инноваций в области здравоохранения [5]:

- медицинские технологические инновации, которые связаны с появлением новых методов (способов, приемов) профилактики, диагностики, лечения и реабилитации на базе имеющихся препаратов (оборудования и медицинских изделий) или новых комбинаций их применения;
- организационные инновации, реализующие эффективную реструктуризацию деятельности системы здравоохранения, совершенствование организации труда персонала и структуры управления;
- экономические инновации, обеспечивающие внедрение современных методов планирования, управления рисками, финансирования, стимулирования и анализа деятельности учреждений здравоохранения;
- информационно-технологические инновации, направленные на автоматизацию процессов сбора, обработки, анализа информационных потоков в отрасли, позволяющих принимать лучшие клинические и административные решения;
- медико-фармацевтические, медико-технические инновации, являющиеся разновидностью медицинских технологических инноваций, однако предполагающих, как императив, использование новых лекарственных средств (медицинских изделий, технических систем), конкурентоспособных по цене и основным параметрам медицинской эффективности.

ЦИФРОВИЗАЦИЯ РОССИЙСКОГО ЗДРАВООХРАНЕНИЯ КАК СИСТЕМНАЯ ИННОВАЦИЯ

В начале 21 века в связи с развитием цифровых технологий началась четвертая промышленная революция, которая характеризуются слиянием технологий обработки информации

с физическими технологиями и размытием границ между физическим, биологическим и цифровым мирами [6]. Хотя многие инновации в медицине давно используют цифровые технологии, массовый характер они приобрели с увеличением вычислительных мощностей и одновременно ценовой доступностью компьютеров для обработки больших данных и использования технологий искусственного интеллекта, накоплением так называемого «цифрового следа» пациента.

Внедрение передовых цифровых технологий для обработки клинических и других видов данных о пациенте обеспечивает высокие стандарты оказания медицинской помощи и переход к модели «4P medicine» (превентивная, персонализированная, партисипативная, предиктивная медицина) [7].

Важнейшими общесистемными эффектами от внедрения цифровых технологий в здравоохранение являются снижение уровня заболеваемости и смертности населения, рост продолжительности жизни, в том числе активной. Например, такой важный класс цифровых инноваций в медицине, как использование технологий мониторинга состояния здоровья позволит не только выявлять патологии на ранней стадии, но и предотвращать развитие заболеваний (среди 10 наиболее распространенных причин смертности в мире — предотвратимые патологии, в первую очередь болезни системы кровообращения и некоторые метаболические расстройства, например, ожирение и сахарный диабет [8]). Использование систем поддержки принятия врачебных решений (СППВР) способно повысить точность диагностики и выработки тактики лечения, применение роботов-ассистентов позволяет проводить оперативные вмешательства одновременно эффективно и менее инвазивно, тем самым сокращая период послеоперационной реабилитации. Телемедицинские системы повышают доступность медицинской помощи, а технологии дистанционного мониторинга, по некоторым оценкам, повышают уровень комплаентности (приверженности лечению) на 44% и позволяют отслеживать своевременность и нужную дозировку для приема лекарств [9]. Существует и множество других инновационных решений для более частных медицинских задач.

При широкомасштабном внедрении подобные инновационные цифровые решения могут значительно уменьшить расходы и нагрузку на систему здравоохранения за счёт переноса фокуса с лечения заболеваний или их осложнений на профилактику и контроль за состоянием пациента, переводя место приложения усилий системы здравоохранения из стационаров в амбулаторное звено.

С точки зрения повышенной инновационной емкости следует отметить высокотехнологичную медицинскую помощь (ВМП) — медицинскую помощь с применением высоких медицинских технологий для лечения сложных заболеваний [10]. ВМП может быть оказана по ряду профилей [11] региональными государственными медицинскими учреждениями, федеральными государственными бюджетными учреждениями коммерческими медицинскими организациями.

Примеры ВМП, требующие инновационных цифровых решений: реабилитационный тренинг с включением биологической обратной связи (БОС) с применением нескольких модальностей, восстановительное лечение с применением комплекса мероприятий в комбинации с виртуальной реальностью, восстановительное лечение с применением комплекса мероприятий в комбинации с навигационной ритмической транскраниальной магнитной стимуляцией, роботассистированная хирургия (хирургическое лечение злокачественных новообразований, в том числе у детей, с использованием робототехники), молекулярно-генетические исследования, компьютерная навигация при оперативных вмешательствах.

При этом развитие инноваций в здравоохранении в России характеризуется высоким уровнем государственного регулирования и планирования. В частности приняты и исполняются стратегия цифровой трансформации отрасли «Здравоохранение» до 2024 года и на плановый период до 2030 года и федеральный проект «Создание единого цифрового контура в здравоохранении на основе единой государственной информационной системы в сфере здравоохранения (ЕГИСЗ)», как один из восьми федеральных проектов в составе ключевого для отрасли Национального проекта «Здравоохранение» [12]. Таким образом органы власти в вопросах

планирования цифровой трансформации действуют по сценариям, характерным для полностью регулируемого рынка, что следует учитывать при планировании и реализации соответствующих программ и проектов [13]. Данный тип экономики отличается следующими чертами:

- правительство отвечает за разработку национальной концепции электронного здравоохранения;
- проводится ограниченное число консультаций с заинтересованными сторонами касательно существующей среды электронного здравоохранения и их мнения о национальной концепции; содержание плана действий формирует главным образом правительство [14].

Несмотря на все особенности и сложности развития и регуляции, цифровая медицина является мощным благоприятствующим фактором в достижении всеобщего охвата услугами здравоохранения, поскольку позволяет:

- расширить спектр, повысить прозрачность и доступность услуг здравоохранения, а также качественного медицинского информационного контента;
- увеличить долю населения, обладающего доступом к имеющимся медицинским услугам, включая маргинализированные и недостаточно обслуживаемые группы;
- оптимизировать процессы эпидемиологического надзора по показателям общественного здоровья;
- содействовать подготовке новых медицинских кадров, непрерывному медицинскому образованию и профессиональной переподготовке для действующих медработников;
- внедрять инновации и повышать эффективность работы систем здравоохранения и оказания медицинской помощи [15].

СТАРТАПЫ КАК КЛЮЧЕВЫЕ УЧАСТНИКИ РОССИЙСКОЙ ИННОВАЦИОННОЙ СИСТЕМЫ В ЗДРАВООХРАНЕНИИ

Доказавшие свою эффективность цифровые технологии строятся на привнесении опыта и знаний математиков и дата-сайентистов в самые разные отрасли, включая здравоохранение. Отсутствие капитальных затрат, доступность технической базы способствуют тому, что цифровые инновации во всем мире инициируются и

развиваются в основном не средним и крупным бизнесом, а стартапами и научными организациями. Основа успешных проектов цифровой медицины — междисциплинарный подход, объединяющий инноваторов, медицинских работников и организаторов здравоохранения.

Каких же успехов в этих условиях добились российские стартапы цифровой медицины? Безусловно, есть лидеры, как например, ООО «Интеллоджик» («Botkin.Al») с технологией анализа медицинских изображений с использованием искусственного интеллекта, ООО «Медицинские скрининг системы» («Цельс») с СППВР на базе технологий искусственного интеллекта для анализа цифровых медицинских изображений, ООО «К-СКАЙ» с платформой прогнозной аналитики Webiomed.

Самые популярные направления у инвесторов в цифровизацию медицины в России — телемедицина, мобильные приложения и сервисы для пациентов, их здорового образа жизни и долголетия, медицинское страхование, а также решения с использованием искусственного интеллекта [16]. По состоянию на 24 апреля 2022 года в глобальном списке «компаний-единорогов» (достигших оценки капитализации более 1 млрд долларов) сферы HealthTech насчитывается 94 предприятия [17]. На российском рынке цифрового здравоохранения по ряду причин подобные компаний, к сожалению, пока отсутствуют.

Несмотря на выдающиеся экономические результаты лидеров рынка, в общемировой практике в большом количестве случаев стартапы не доходят даже до первых продаж. Эффективно пройти путь от идеи до внедрения стартапам могут помочь институты развития через обучающие программы, содействие в привлечении капиталов инвесторов и менторскую поддержку от уже состоявшихся коллег.

Однако в части предоставления профильной медицинской и технической экспертизы, подготовки и проведения клинических испытаний и исследований у неспециализированных институтов развития имеются пробелы. Потому ФГБУ «НМХЦ им. Н.И. Пирогова» Минздрава России (далее — Пироговский Центр) принял на себя эту функцию и в марте 2021 года запустил собственную программу акселерации медицинских стартапов [18].

ПИРОГОВСКИЙ ЦЕНТР КАК ЭКСПЕРТНАЯ ОРГАНИЗАЦИЯ ЦИФРОВОГО ЗДРАВООХРАНЕНИЯ

Пироговский Центр — многопрофильное лечебное, научное и учебное учреждение, оказывающее ВМП по 25 профилям. Он является одним из ведущих медицинских учреждений России, обладает мощной клинической и научной базой, аккредитован для проведения клинических исследований (испытаний) медицинских изделий в т.ч. в целях их регистрации в рамках Евразийского экономического союза.

Сотрудники Пироговского Центра — специалисты высокой квалификации, среди которых по состоянию на конец 2022 года: 2 члена Российской Академии Наук, 26 профессоров, 51 доктор медицинских наук, 159 кандидатов медицинских наук, 3 заслуженных деятеля науки. К развитию инноваций активно привлекаются Учёный и диссертационный советы, Лаборатория цифрового развития, Институт усовершенствования врачей, включающий 20 кафедр по различным специальностям.

Лаборатория цифрового развития была создана в 2019 году в рамках ИТ-дирекции именно для целевой работы с инновациями. Ее сотрудники активно участвуют в реализации как научных проектов — разработка СППВР, диагностика различных заболеваний головного мозга по ЭЭГ, МРТ, КТ и т.д., так и прикладных — апробации, внедрении и развитии информационных систем, обеспечивающих ежедневную работу Пироговского Центра.

Будучи типичным акцептором инноваций цифровой медицины, Пироговский Центр заинтересован в решениях, позволяющих увеличить эффективность оказываемой медицинской помощи, расширять номенклатуру оказываемых медицинских услуг, оптимизировать существующие бизнес-процессы, повышать эффективность труда, обеспечивать безопасность пациентов и медицинского персонала. Привлечение именно стартапов в качестве источника инновационных решений в сфере цифровой медицины стало логичным шагом, вызванным следующими причинами:

- 1) Наличие потока стартапов, самостоятельно обращающихся в Центр за профильной экспертизой.
- 2) Интерес врачей к новым продуктам, способным повысить качество их работы, ускорить

- или упростить рутинные процессы, который пока не удовлетворяют действующие поставщики медицинских изделий.
- 3) Наработанные в научно-образовательном и ИТ-блоках навыки по апробации и внедрению в практическую работу различных решений цифровой медицины, в том числе собственных
- 4) Инновационный имидж Центра, его фокус на работе с медицинскими инновациями.

В 2020 году был дан старт созданию акселератора для медицинских стартапов, и потребовалось более полугода интенсивной подготовительной работы прежде, чем запустить программу отбора.

РЕЗУЛЬТАТЫ ПИЛОТНОЙ АКСЕЛЕРАЦИОННОЙ ПРОГРАММЫ

Первая в российской медицинской организации государственной системы здравоохранения акселерационная программа для стартапов, создающих решения цифровой медицины была проведена Пироговским Центром в 2021 году. Были определены следующие цели акселерации:

- создание прототипов решений компонентов «умной» клиники;
- отработка механизмов трансляции инновационных решений с этапа прототипа до широкого практического использования в российском здравоохранении.

Технологическими направлениями акселератора были выбраны наиболее актуальные для Центра темы по состоянию на 2021 год:

- СППВР по подбору терапии с учётом особенностей пациента, оценки рисков;
- восстановление мышечной активности после паралича с использованием геймификации;
- детектирование движений, автоматическое определение недопустимых ситуаций, в том числе немедицинских;
- когнитивный тренинг и тренинг социальных расстройств для пациентов с эпилепсией;
- нефармакологические методы психологического отвлечения пациента от боли;
- тренажёры для высокореалистичного обучения диагностике, лечению и реабилитации, включая симуляции медицинских вмешательств.

Помимо привлечения конкретных решений и команд, пилотная программа была задумана

как инструмент развития внутренней системы инноваций. Уже на стадии подготовки акселерационной программы был выстроен график регулярных совещаний научного и ИТ-подразделений, взяты в обсуждение вопросы мотивации медицинских работников, формализованы процедуры рассмотрения оценки заявок. Произведенные изменения в организационных процессах помогли в короткие сроки подготовить и запустить акселерационную программу.

Всего на вход акселерационной программы подано 187 заявок, по которым была проведена первичная оценка в срок менее двух недель. 78 из них не соответствовали формальным критериям и не передавались на дальнейшую экспертную оценку.

По результатам рассмотрения полученных материалов экспертами — заведующими отделениями, руководителями Института усовершенствования врачей, сотрудниками дирекции, а также другими внутренними и внешними экспертами — было выбрано 13 полуфиналистов для принятия участия в финальном дне отбора в очном формате.

В итоге конкурсной процедуры полуфиналистами стали следующие проекты:

- 1. VR-тренажёр с базовыми сценариями для проведения провокационных проб и определения скрытых форм эпилепсии. Стимуляция эпилептических приступов (моделирование стрессовых ситуаций для больных с эпилепсией в целях стимуляции развития эпилептических приступов, определение сенсорных провокаторов эпилептических приступов в рамках оценки профпригодности).
- VR GO приложение для смартфонов и очков виртуальной реальности для дополнения комплексной реабилитации пациентов с целью повышения возможности восстановления сенсомоторных функций опорно-двигательного аппарата при помощи системы обратной связи. Восстановление мышечной активности после паралича посредством геймификации процесса.
- G9 Reahand VR восстановление мышечной активности всей руки с помощью игрового процесса. Динамическая поддержка руки, компенсирующая вес конечности, позволяет совершать свободные движения рукой с

- минимальным усилием. Включает тренирующие игры VR и 2D.
- 4. Impulse Neiry VR-очки со встроенными электродами для снятия электроэнцефалограммы, платформа для диагностики и когнитивной реабилитации, позволяющая диагностировать состояние и проводить тренинг когнитивных функций.
- DataSuite «умный» костюм, отслеживающий двигательную активность пациента, поможет цифровизовать и геймифицировать (в том числе посредством VR- и AR-игр) процесс восстановления подвижности суставов после травм.
- 6. SMARTYMED тренажёры для высокореалистичного обучения диагностике, лечению и реабилитации, включая симуляции медицинских вмешательств. Решение позволяет врачам визуализировать и преобразовывать данные КТ/МРТ в голограммы и размещать их на теле пациента.
- 7. VR Тренажёр сердечно-лёгочной реанимации программно-аппаратный комплекс, состоящий из «умного» манекена и системы погружения в виртуальную реальность, для обучения оказанию первой помощи. Данный симулятор позволяет предоставить передовой инструмент для оценки знаний (аттестации).
- 8. Pulssir технология удалённого бесконтактного мониторинга состояния здоровья и поведения людей для определения и прогнозирования критических ситуаций. Детектирование движений, автоматическое определение недопустимых ситуаций, в том числе немедицинских.
- 9. MedBI аналитическая платформа для управления организацией на основе данных. Предоставляется как сервис (SAAS). Интегрируется с основными информационными системами, и на дашбордах отображает динамику ключевых метрик деятельности организации, позволяя принимать управленческие решения на основе данных.
- 10. Vein CV бесконтактная система визуализации вен, основанная на уникальных нейросетевых алгоритмах. Новый подход к визуализации вен позволит создать уникальный веновизор, обладающий всеми свойствами передовых устройств.

11. «Точка зрения» СППВР для эндоскопии желудочно-кишечного тракта (ЖКТ) человека — интеллектуальная система контроля качества эндоскопической диагностики ЖКТ, поиска полипов и выявления новообразований на ранней стадии.

- 12.VR Palliative программно-аппаратный комплекс цифровой терапии с использованием виртуальной реальности для управления болью пациента. Комплекс разработан с использованием интеграции технологий виртуальной реальности; датчика, фиксирующего вариативность сердечного ритма; нейроинтерфейса, интегрированного в шлем виртуальной реальности, для психоэмоциональной коррекции методом БОС на основе анализа биоритмов мозга пациента.
- 13. Playfit беспроводные носимые датчики со встроенными алгоритмами машинного обучения для мониторинга, целью которых является отслеживание движений пациента для двух задач: геймификации реабилитации в целях восстановления мышечной активности и организации интеллектуального мониторинга пациентов в стационаре и на дому, особенно в областях кардиологии, ортопедии, хронических заболеваний.

В рамках проведения итогового дня отбора полуфиналисты провели очные презентации для жюри, и по результатам голосования 6 финалистов (победителей отбора) получили право участия в образовательной программе и организации пилотного проекта. К сожалению, не все проекты смогли провести полноценный пилотный проект: некоторые участники программы не смогли полностью протестировать свои продукты, так как заявленные в конкурсных документах метрики аппаратных, программных и аппаратно-программных комплексов при проведении апробации в Пироговском Центре не воспроизвелись.

Впоследствии в индивидуальном порядке в пилотные проекты была вовлечена и часть полуфиналистов, сумевших доработать решения, получив требования и предложения отраслевых экспертов.

В целях повышения уровня теоретических знаний и прикладных навыков команд стартапов в сфере медицины была разработана и

проведена образовательная программа по следующим темам:

- интервью по вопросам выявления технических/эргономических недостатков;
- нормативно-правовое сопровождение клинических исследований;
- этическая экспертиза исследований в медицине;
- дизайн клинических исследований.

Таким образом, организация акселератора позволяла разработчикам цифровых решений подготовить и реализовать дорожную карту развития своего решения, включающую проверку гипотез по развитию продукта, апробацию цифрового решения в условиях реальной клинической практики.

Пироговский Центр в свою очередь получал возможность:

- кастомизировать часть решений под свои нужды и внедрить их;
- разработать, внедрить и оптимизировать организационную схему работы с инновациями;
- предоставить вовлеченным сотрудникам Центра возможность приобрести практические навыки работы с продуктами, проверкой продуктовых гипотез.

СИСТЕМА УПРАВЛЕНИЯ ИННОВАЦИЯМИ

Поскольку принцип функционирования акселератора подразумевает взаимодействие со значительным числом входящих проектов на потоке, обеспечение работы со стартапами стало одним из источников требований к повышению эффективности процессов управления инновациями.

На уровне государства инновационная модель развития системы здравоохранения включает в себя единство медицинской науки, развитие системы непрерывного медицинского образования, международное партнерство с ведущими странами и научными центрами, охрану интеллектуальной собственности, развитие государственно-частного партнерства, создание целевых межведомственных медицинских научных программ (Рис. 1) [2].

Использование этого подхода на уровне отдельной медицинской организации должно привести к развитию локальной инновационной системы, и запуск акселератора медицинских

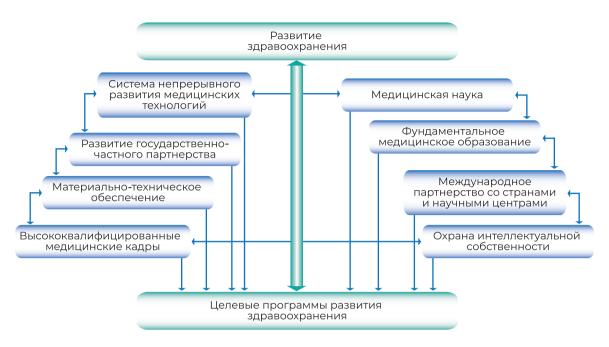


Рисунок I — Инструментарий инновационной модели развития здравоохранения.

стартапов стал экспериментом, позволившим апробировать подходы к ее созданию. В рамках разработки и реализации первой акселерационной программы были выполнены следующие шаги:

- определена организационная структура, разделены зоны ответственности между задействованными подразделениями;
- сформированы кросс-функциональные команды для реализации пилотных проектов;
- разработаны регламенты работы и типовые документы;
- формализовано сотрудничество со стартапами посредством оформления договорных отношений на основе пакета модельных документов.

В ходе акселерации был сделан ряд наблюдений, важных для развития в России цифровой медицины силами стартапов:

- высокое качество технической проработки решений, но при этом информация о результирующих метриках и способах их получения обычно недостаточно репрезентативна;
- система наборов дает пиковые нагрузки на инфраструктуру медицинской организации в целом и задействованных сотрудников в частности;

- типичные для акселераторов обучающие программы, направленные на развитие бизнеса, не закрывают потребностей и пробелов в знаниях стартапов о медицине и здравоохранении;
- стартапы не ставят перед собой задачи прохождения необходимых и (или) полезных сертификаций, даже для базовых сертификатов безопасности используемого оборудования;
- отсутствие опыта подготовки программ и методик технических испытаний программных продуктов;
- отсутствие опыта разработки дизайна клинических исследований и подготовки к прохождению этической экспертизы цифровых решений для медицины.

Эти наблюдения следует учитывать при внедрении инноваций в медицинских организациях и планировании деятельности институтов развития, направленных на медицинские проекты.

ЗАКЛЮЧЕНИЕ

Проведенная акселерационная программа 2021–2022 годов в составе как образовательной части, так и пилотирования инновационных

решений на базе медицинской организации в условиях реальной клинической практики, показала свою эффективность. Большинству финалистов акселератора удалось выполнить поставленные в рамках пилотных проектов задачи, а с одним из них продолжила сотрудничество уже на постоянной основе Клиника медицинской реабилитации Пироговского Центра.

Пироговский Центр в свою очередь смог сформировать новые компетенции по работе с инновациями. В частности, после анализа проведенной акселерационной программы были приняты следующие решения:

- 1. Перейти от работы в режиме «сбор пула заявок за период несколько месяцев рассмотрение единовременный запуск лучших проектов в работу» к регулярному («револьверному») рассмотрению поступающих заявок не реже одного раза в месяц с последующим запуском в работу в целях сглаживания пиковых нагрузок, в том числе на участников кросс-функциональных команд в момент прохождения пилотных проектов.
- 2. Создать инновационный комитет, включив в отлаженный трек внутренние инициативы Центра, в том числе не относящиеся к решениям цифровой медицины.
- 3. Исключить из процесса работы с проектами классические практики развития проектов в части бизнес-образования, так как это не профильная компетенция для медицинского учреждения, а стартапы заявляют потребность именно в медицинской и технической экспертизе.
- Упростить образовательную компоненту работы со стартапами, предоставляя учебные материалы, связанные с проработкой задач по развитию конкретного продукта от профильных медицинских работников и ИТ-специалистов Центра;
- 5. В перспективе создать систему мотивации для внутренних инноваторов, включающую в себя:
 - выделение финансовых ресурсов на премирование сотрудников Центра, приобретение медицинской техники, программного обеспечения, учебных пособий, специальной литературы, привлечение внешних экспертов, участие в конференциях, симпозиумах, форумах и иных

- профильных мероприятиях научной и медицинской направленности, подписки на информационные системы, прохождение обучающих курсов;
- внедрение и обеспечение доступа к единой системе управления клиническими исследованиями/испытаниями Центра, доступ к ресурсам Лаборатории цифрового развития и Технического отдела ІТ-дирекции, Отдела координации научной деятельности, Института усовершенствования врачей, предоставления консультации врачей-методистов и внешних экспертов.

На основе сделанных наблюдений рекомендуем институтам развития помочь стартапам цифровой медицины получить знания и практические навыки по следующим вопросам:

- процедура получения регистрационного удостоверения на медицинское изделие, включая методики проведения испытаний, подготовки дизайна и проведения клинических исследований (в том числе прохождения этической экспертизы);
- специфика регистрации и оборота программного обеспечения, являющегося медицинским изделием, в том числе с использованием технологий искусственного интеллекта;
- организация государственных закупок в Российской Федерации.

Стартапам цифровой медицины, в свою очередь, предлагаем рассмотреть следующие рекомендации:

- 1. На максимально ранней стадии пригласить в команду медицинского директора или медицинского эксперта для предоставления профильной экспертизы и обеспечения коммуникаций с клиническими специалистами. Опыт акселератора показал, у таких стартапов уровень зрелости продукта выше, проблемные интервью с потенциальными пользователями проведены лучше.
- 2. Минимально жизнеспособного продукта для апробации на добровольцах часто недостаточно. В большинстве случаев продукт должен быть высокой степени готовности (уровень готовности технологии 6 и выше), должны присутствовать документы, подтверждающие безопасность для эксплуатации при участии добровольцев/пациентов.

- 3. После разработки минимально жизнеспособного продукта и до интервью с клиницистами и/или пациентами провести техническую экспертизу. Это поможет оперативно выявить и устранить недоработки, не тратить ограниченный ресурс врачей на неудачную демонстрацию.
- 4. Заложить необходимое количество времени, денег, иных ресурсов на клинические исследования и клинические испытания с учетом класса опасности создаваемого медицинского изделия.

Медицинскому сообществу следует сфокусироваться на создании эффективных механизмов трансляции инновационных технологий и продуктов в клиническую практику: валидацию решений цифровой медицины, их апробацию на площадках — потенциальных потребителях и последующую интеграцию в их бизнес-процессы и регулярные практики.

Пироговский Центр ведет эту работу и приглашает медицинские организации, стартапы, научные коллективы, институты развития присоединиться к ней. Заявки и инициативы можно направлять через форму [19]:

https://www.pirogov-center.ru/education/accelerator-medical-startups/

Благодарности. Коллектив авторов выражает благодарность за совместную плодотворную работу заместителю генерального директора по научной и образовательной деятельности, к.м.н. Пулину Андрею Алексеевичу, специалисту отдела координации научной деятельности Кочановской Оксане Геннадьевне, специалисту отдела координации научной деятельности Новиковой Екатерине Александровне, проректору Института усовершенствования врачей, к.м.н. Асташеву Павелу Евгеньевичу.

ЛИТЕРАТУРА/REFERENCES

- 1. Пугачев П.С., Гусев А.В., Кобякова О.С., Кадыров Ф.Н., Гаврилов Д.В., Новицкий Р.Э., Владзимирский А.В. Мировые тренды цифровой трансформации отрасли здравоохранения // Национальное здравоохранение. 2021. №2(2). С.5-12. [Pugachev PS, Gusev AV, Kobyakova OS, Kadyrov FN, Gavrilov DV, Novickij RE, Vladzimirskij AV. Mirovye trendy cifrovoj transformacii otrasli zdravoohraneniya. Nacional'noe zdravoohranenie. 2021; 2(2): 5-12. (In Russ.)] doi: 10.47093/2713-069X.2021.2.2.5-12.
- **2.** OECD/Eurostat (2018), Oslo Manual 2018: Guidelines for Collecting, Reporting and Using Data on Innovation, 4th Edition, The Measurement of Scientific, Technological and Innovation Activities, OECD Publishing, Paris/Eurostat, Luxembourg. doi: 10.1787/9789264304604-en.
- **3.** Сыпабеков С.Ж., Тулембаев А.Н. Особенности инновационной деятельности в медицине // Нейрохирургия и неврология Казахстана. 2015. №3. С.3-10. [Sypabekov SZh, Tulembayev AN, Osobennosti innovacionnoj deyatel'nosti v medicine. Nejroxirurgiya i nevrologiya Kazaxstana. 2015; 3: 3-10. (In Russ).] Доступно по: http://neurojournal.kz/assets/files/%D0%9E%D0%A1%D0%9 E%D0%91%D0%95%D0%9D%D0%9E%D0%9E%D0%A1%D0%A2%D0%98%20%D0%98%D0%9D%D 0%9D%D0%9E%D0%9D%D0%9E%D0%9D%D0%9E%D0%9D%D0%9E%D0%9D%D0%9E%D0%9D%D0%9E%D0%9D%D0%9E%D0%9D%D0%9E%D0%9D%D0%9E%D0%A1%D0%A2 %D0%98%20%D0%95%D0%9C%D0%95%D0%94%D0%98%D0%A6%D0%98%D0%9D%D0%9D%D0%95. pdf. Ссылка активна на 09.11.2022.
- 4. Агарков С.А., Кузнецова Е.С., Грязнова М.О. Инновационный менеджмент и государственная инновационная политика. М.: Российская Академия Естествознания, 2011. [Agarkov SA, Kuznecova ES, Gryaznova MO. Innovacionnyj menedzhment i gosudarstvennaya innovacionnaya politika. М.: Rossijskaya Akademiya Estestvoznaniya, 2011. (In Russ).] Доступно по: https://monographies.ru/ru/book/section?id=3767. Ссылка активна на 09.11.2022.

- **5.** Бердникова Е.Ф. Инновационное развитие здравоохранения // Вестник Казанского технологического университета. 2012. Т.15. №11. С.300-305. [Berdnikova EF. Innovacionnoe razvitie zdravooxraneniya. Vestnik Kazanskogo texnologicheskogo universiteta. 2012; 11: 300-305. (In Russ.)] Доступно по: https://cyberleninka.ru/article/n/innovatsionnoe-razvitie-zdravoohraneniya/ viewer. Ссылка активна на 09.11.2022.
- **6.** Высшая инжиниринговая школа НИЯУ МИФИ. Доступно по: https://hes.mephi.ru/?page_id=21 597#:~:text=%D0%A7%D0%B5%D1%82%D0%B2%D0%B5%D1%80%D1%82%D0%B0%D1%8F%20 %D0%BF%D1%80%D0%BE%D0%BC%D1%8B%D1%88%D0%BB%D0%B5%D0%BD%D0%B 0%D1%8F%20%D1%80%D0%B5%D0%B2%D0%BE%D0%BB%D1%8E%D1%86%D0%B8%D1%8F%20 %D1%85%D0%B0%D1%80%D0%B0%D0%BA%D1%82%D0%B5%D1%80%D0%B8%D0%. Ссылка активна на 09.11.2022.
- 7. 2021 global health care outlook Available at: https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/life-sciences-health-care/deloitte-cn-lshc-global-health-care-outlook-report-en-210226. pdf. Accessed Nov 9, 2022.
- **8.** Всемирная организация здравоохранения Доступно по: https://www.who.int/ru/news-room/ fact-sheets/detail/the-top-10-causes-of-death. Ссылка активна на 09.11.2022.
- **9.** Digital America. State of the U.S. Consumer Technology Industry 2019. Available at: https://cdn.cta.tech/cta/media/resources/i3/pdfs/digital-america-2019.pdf. Accessed Nov 9, 2022.
- **10.** Министерство здравоохранения Российской Федерации. Доступно по: https://minzdrav.gov.ru/reception/help/vmp/0. Ссылка активна на 09.11.2022.
- **11.** Постановление Правительства РФ от 28.12.2021 №2505 «О Программе государственных гарантий бесплатного оказания гражданам медицинской помощи на 2022 год и на плановый период 2023 и 2024 годов».
- **12.** Национальные проекты «Здравоохранение» и «Демография». Доступно по: https://minzdrav. gov.ru/poleznye-resursy/natsproektzdravoohranenie. Ссылка активна на 09.11.2022.
- **13.** Карпов О.Э., Субботин С.А., Шишканов Д.В., Замятин М.Н. Цифровое здравоохранение. Необходимость и предпосылки // Врач и информационные технологии. 2017. №3. C.6-22. [Karpov OJe, Subbotin SA, Shishkanov DV, Zamjatin MN. Cifrovoe zdravoohranenie. Neobhodimost' i predposylki. Vrach i informacionnye tehnologii. 2017; 3: 6-22. (In Russ).]
- **14.** Всемирная организация здравоохранения. Доступно по: https://apps.who.int/iris/bitstream/handle/10665/75211/9789241548465_rus.pdf?sequence=9&isAllowed=y. Ссылка активна на 09.11.2022.
- **15.** Всемирная организация здравоохранения. Доступно по: https://apps.who.int/iris/bitstream/han dle/10665/330370/9789289059985-rus.pdf. Ссылка активна на 09.11.2022.
- **16.** Обзор: цифровизация здравоохранения. Доступно по: https://zdrav.expert/index.php/%D0%A 1%D1%82%D0%B0%D1%82%D1%8C%D1%8F:%D0%9E%D0%B1%D0%B7%D0%BE%D1%80_%D0% A6%D0%B8%D1%84%D1%80%D0%BE%D0%B2%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1% 8F_%D0%B7%D0%B4%D1%80%D0%B0%D0%B2%D0%BE%D0%BE%D1%85%D1%80%D0%B0%D0% BD%D0%B5%D0%BD%D0%B8%D1%8F. Ссылка активна на 09.11.2022.
- **17.** The Complete List of Global Health Tech Unicorns. Available at: https://www.holoniq.com/healthtech-unicorns. Accessed Nov 9, 2022.
- **18.** Пироговский Центр запустил акселератор медицинских стартапов. Доступно по: https://www.pirogov-center.ru/about/press-centre/news/detail.php?ID=55204. Ссылка активна на 09.11.2022.
- **19.** Акселератор для медицинских стартапов. Доступно по: https://www.pirogov-center.ru/education/ accelerator-medical-startups. Ссылка активна на 09.11.2022.